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INTRODUCTION

The interaction problem for explosive fuse charges is studied within a formulation proposed by
M. A. Lavrent'ev. The case of two concentrated changes and that of a uniform number of evenly distributed
surface charges are considered. It is shown that the area of the ejection cone decreases in the interaction.
Highly distributed explosive charges, called fuse charges, were first successfully applied for different types
of excavation and earth-moving operations in the Ukraine in the 1940's and 1950's under the direction of
M. A. Lavrent'ev. Most of these operations, such as the digging of wells and the laying of drainage chan-
nels, were carried out at that time by N. M. Sytyi. A large number of concentrated charges were used
(either connected by a detonation fuse or having a capsule inserted into each charge, after which it was ex~
ploded) in order to construct a trench in the soil with high length—width ratio or, for example, to create a
shock wave that would have a cylindrical front at significant distances and for a long duration. M. A, Lav-
rent'ev and N. M. Sytyi proposed that a narrow ditch be cut in the soil (if we are speaking of a french) in
which the explosive charge is laid without exploding and that the explosion be carried out using a single
detonator. Fuse charges have now become extraordinarily widespread. An approximation method of cal-
culating the dynamic stress and velocity fields, based on a model of an ideal incompressible fluid, is often
used to theoretically estimate the effect of an underground charge. Lavrent'ev [1] solved the production
and effect problem for a blast from a hollow charge within the framework of this model. Steady fluid flow
was considered here. A model of an ideal incompressible fluid has been used [2] to calculate the cone di-
mensions for an underground ejection explosion, a pulsed formulation of the problem was applied, and
the complementary bearing power of the spoil (or critical velocity) was introduced. The ideas of Lavrent'ev
were subsequently developed in works on the shape of the ejection cone [3-5], on the principles of an absolute
directed explosion [6-7], on the disruptive effect of an explosion [8, 9], and on a principle of a uniform
grinding for rock [10].

A pulsed formulation of the hydrodynamical problems is usually used in solving explosion problems
[11]. Suppose we have a region D with boundary T filled with an ideal incompressible fluid. A pressure
p(Q, t), where Q=I' acting for a brief period of time T is defined at points of the boundary. It is re-
quired that the field of pressures p (M, t) and velocities_;(M, t), where M= D |, be determined in D. To
solve this problem, we introduce the pressure pulse

PM)= | pM,tyar, (0.1)
0

with the condition [11] that pressure p (@, t) is short—term,_\;= —(1/p) grad P (M).

The incompressibility condition diviy =0 implies that the pressure pulse P (M) satisfies the Laplace
equation AP = 0. Thus it is necessary to solve the Dirichlet problem for a Laplace equation under the
boundary condition (0.1). The pressure and velocity calculated using this method are independent of time,
which corresponds to the concept that the process in which the pressure andvelocity fields are established
at the initial stage of motion arising in the explosion is short-term.
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From the physical point of view, the creation of an initial velocity field is the result of propagation,
reflection, and interaction between the stress waves in the medium surrounding the explosive, Therefore,
the scheme of an ideal incompressible fluid is refined in the most desirable way by establishing its relation
to exact solutions of wave-propagation problems in a compressible medium.

It has been shown [12, 13] in an acoustic approximation that the model of an ideal incompressible
fluid "can be interpreted as the integral asymptotic (as t — «) of the compressible-medium problem,”
There exist two varieties of this model. In one model (the fluid model) [2] the soil is considered as an ideal
incompressible fluid throughout the entire region it occupies. In the second model (solid—fluid model), the
soil is described by equations for an ideal incompressible fluid only in some region near the charge. Out-
side the region, the soil behaves as an absolutely rigid body, while the boundary separating the fluid is a
solid wall, found by setting the velocity modulus on it equal to the critical magnitude cx.

Two problems in the solid—fluid model for the interaction of explosive charges were considered as
an example, They are of definite interest from the practical point of view, since the explosion of systems
of charges is encountered quite often. At the same time, it is unclear what it is that an interaction of charges
leads to, that is, how the dimensions of the ejection region vary.

1. Interaction Problem for an Infinite System of Plane

Surface Charges

Suppose the region D is in the form of a lower half-plane, and let an infinite series of plane charges
of length 2! be situated on the surface y = 0, 2m units apart. The effect of each charge is determined by
the pulse pressure P, since a potential ¢ = ~¢, =—P/p is defined on each segment.

Because of symmetry, we will limit ourselves to considering the region formed by two vertical lines
passing through the midpoint of one charge and the midpoint of the distance between them. Let us introduce
the dimensionless variables W = w/@g and z = zc#*/@, (superscripts will be henceforth omitted). The flow
region in the physical plane is depicted in Fig. la. On the segment CD ¢ = 0 (free boundary). The unknown
boundary AB is a segment of the streamline EABC on which the stream function Y = 0. Moreover, the
modulus of veloeity is constant and equal to one on the boundary AB. 1t is necessary to find from these data
an analytic function w(z) = @ + i} that is the complex flow potential andalso determinesthe lines AB, The
flow region is in the form of a half-band (Fig. 1b) in the plane of the complex potential,

Let us introduce the function £ = Indz/dw. The flow region in the plane £ is also in the form of a
half-band (Fig. 1¢). The problem will reduce to the conformal mapping of the half-bands represented in
Fig. 1b and ¢ with the indicated correspondence of points, obtained by means of an intermediate mapping on
the half-plane, and has the form

e—c¢—2ish§

e+4¢ ? (1.1)

¢os iy =

where ¢ and e are the parameters of the problem,
C=%(D+-1~), e=—1«(u+ i)

(v is the velocity at the point C and u, the veloeity at the point E). We obtain from Eq. (1.1) the ordinary dif-
ferential equation 5 a5
e o2 i[cosnw»«e—c]
e ¢

dw e ¢
a c
@ @ + (b — cos mue) (2 + cos ),
] 2_¢ s 2t 0, +'
! . Z —¢ 2 ¢
£ D c idd b= et Y= T
o i } ivm o
; » i T =0 A whose integration yields the desired solution. The
N T integral along the segments ED and DC indicates a
\_// X ‘ relation between the parameters ¢ and d and the ini-

tial data I and m, and, along the curve AB, the shape

Fig. 1 of the cone boundary. Figure la depicts the shape of
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3 the ejection cone at I ® 0.1 and m ™ 0.095. Whenc =1 (v =1, points B and C co-
0,081 inciding), the charges do not interact, and our solution coincides with a previously
found solution [3].

0953 When e = 1 (u = 1) points E and A coincide, and only part (depending on the
size of c) of the charge will affect the ejection. It is of interest to note that if flow

: . is reversed (i.e., if we assume that the segment DC is the charge and that AD is

g or G2 the free surface), our solution again coincides with the previously found solution

{31.

Fig. 2
The area S of the ejection cones was calculated for different distances be-
tween the charges when I = 0.1 (when m > 0,244, the charges do not interact) in

order to estimate the efficiency of the operation of the system of charges. This dependence is depicted in
Fig. 2, The interaction of charges under our formulation decreases the cone area. One feature of the prob-
lem is that as m — 0, the entire system of charges reduces to a single infinitely distant charge, and, in gen-
eral, no ejection occurs. Expressed otherwise, it is found that if we take two charges in place of an infinite
system, the ejection cone does not vanish when they have completely approached each other.

Let us consider the interaction of two concentrated surface charges whose effect in the hydrodynamic
model is described by dipoles with moment M. The size of M for a surface charge is determined by the
formula M = ¢, where ¢ is the potential arising on the charge line and 7 is charge length. Since ¢ is
proportional to the charge thickness, we find that M is proportional to the charge energy. It is known from
dimensionality theory that the characteristic dimension of a cone from such a charge is proportional to
¥ M/cx, while the area is proportional to the area of the explosives. Consequently, the area of the cone is
equal to the total area of the noninteracting charges as the two surface charges merge.

Let us consider the problem in more detail in order to determine the influence of interacticn in in-
termediate cases.

2. E‘xplosion of Two Surface Charges

The general form of the flow is depicted in Fig. 3a. Because of the symmetry of the problem, we will
limit ourselves to the right half-plane. A charge situated at point B (x = L, y = 0) will be said to be a dipole
with moment M. It is required that the complex flow potential w(z) = ¢ + i¥ and the unknown part of the
boundary DC be found in the region D, from the boundary conditions ¢ = 0 on the free surface AC, § = 0 in
ADC (AD is the streamline, by symmetry), and |dw/dz| = c* on the unknown part DC. We introduce the di-
mensionless variables N '

Then |dw/dz| = 1 on DC and W ® i/(z—L) in a neighborhood of B. The bars will henceforth be omitted over
dimensionless variables.

We will use the method of singularities [14, 15] for the solution. We introduce a parametric complex
variable t and form a flow region D, and a quadrant of the unit circle ADC of the plane t with the point cor-
respondence ty = 0, tp = 1, and ¢ = i (Fig. 3b). Here the point tg = ih (h is determined in the course of
solving the problem) corresponds to B. The flow region in the plane w is depicted in Fig. 3c. Let us con-
struct the function w(t). In a neighborhood of B(t=ih) —®=<j=<wx, i.e., there exists a flow with an in-
finite flow rate. The independent variables vary by the same magnitude as this point is circuited in the t
) and w planes. Consequently, a first-order pole corre-
sponds to this point for the function w(t). When t=0
() fs and t = i (points A and C), w (t) has first-order zeros
| (the conformal property is not violated at these points
I and dw/dt # 0). The conformal property is violated
at the points F (t = r) and D (t = 1), so that dw/dt = 0.
Since ¥ = 0 on ADC and ¢ = 0 on ABC, w may be con-
t& tinued, by symmetry, to the entire complex plane with

poles at t = +ih and # i/h, and zeros at the points t=0
and t = #1i. It is rational except for the other singular
Fig. 3 points and has the form
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i (GRS ENCoUE (2.1)
where A is a real constant.
We find by direct computation that

dw _ AR® (1 — %) (12 —r?) (1 — %9

g TP @ RBE(1L ke .2)
where

r+ -:— = % —h

or

='l

l{ - 4’ 2.3)

when h <hy = ¥2—1, where r is a real number, 0<r<1, Whenh=hjandr =1,

1 ) 7T ¢
7-—h+zl/4—~(—,—1—h}\

2 y

r =

as h > hy increases further, where r is 2 complex number, |r| = 1, The point F travels along the arc CD in
Fig. 3b correspondingly when h > h; and the point D travels along the lower coast of the section FA in Fig,
3c.

Let us now calculate the function dw/dz = w(t). At the pointt=r

dw _cdwdz
T drdt

I r is a real number, dz/dt # 0, since the conformal property is not violated on AD under the mapping
z = t, and, consequently, dw/dz = 0, But if r isa complex number, [dw/dt| =1anddz/dt=0. Wewill therefore
consider each case separately.

1) h < hy, r a real number. In this case the exterior of a unit semicircie and the section along the
imaginary semiaxis (Fig. 4a) is the flow region in the w plane. As the point B in the { plane is circuited,
the independent variable varies by ¥, and varies by 27 as a circuit is carried out in the @ plane, so that
the function w has a second-order pole at the point B (t = ih). At the point F (1 = r) w has a first-order zero.
A line segment in the @ plane corresponds to the line segment AFD in the t plane, so that, by symmetry, w
can be continued through AF¥D and, analogously, through ABC, and we may establish that it has a second-
order pole at the point t = ~ih and a first-order zero at the point t =—r. The function @ is now defined in
the unit circle and when |t| = 1, lw| = 1. By symmetry, it can be continued to the entire complex plane by

means of inversion. Consequently, it has second-order zeros at the
a b points *i/h and poles at the points #1/r. Direct verification shows that

(L 2Ry (e — 1Y)
= lEpmp @4

is the desired function.

We note that the flow region in the @ plane has a groove D ¥'F
or €&’ D as a function of h. For small h, this is the groove D¥'F
which decreases with increasing h and vanishes when h = hy. A groove
Ccz”D then arises and as h — hy (r — 1), the independent variable for
Fig. 4 the point &” tends to the value 3v/2 and the flow region qualitatively
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varies (Fig. 4b). The conformal property of the mapping is violated at the point &’

{or &) and dw/dt has a first-order zero. When h = h, (no grooves), the conformal

property is violated at the point D. In this case dw/dt has a second-order zero, since

w (t) has the expansion w(t)—i ™ (t—1)% at this point. We will find the value of h, and the

points f.. and ¢ e The solution of the equation dw/dt = 0 reduces to the solution of
i the biquadratic equation

t — 262 4-1=0,

where

The desired solution has the form

We prove that b > 0 proceeding on the basis of h < vr 1; consequently, flow fromthe point &' or &'
exists as a function of the conditionb> 1or b < 1. Solvmg the equation b = 1, we find that h, is the solution
of the equation

%—r=i(1 —l—h\\

and, consequently, h, = (V8= f5)f— & 0,342, Thus & is a real variable, te —=tgn and belongs to FD when
‘_0<h<h2 ; when h,<< k<< h, ts-is a complex variable, ty =tgr = e1.9 and belongs to DC, where 0 <
6 < /2. The presence of the groove & means that the modulus of velocity rose on the segment FD
from zero to some magnitude greater than 1 (the point & ‘), and then decreases to the point D (cf. Fif. 4a).
The groove &'’ indicates that the independent variable for the velocity is equal to —x/2 at D, and does not
grow monotonically to 7/2 at C, but first decreases in value at &'’ asa consequence of which the flow
partially turns into the second sheet of a Riemannian surface.

To determine the shape of an ejection crater from Egs. (2.2) and (2.4), we find the differential equation

., dz Ar2 (1 —t3) (1 _'tﬂ,-Z)z (2.5)

Ll S T

We now determine A, We find from Eq. (2.5) that in a neighborhood of the point t = ih,

Ah% (1 4- B3 (1 - h%r2)2
o — D~ A UERIGERY (g,

and from Eq, (2.1), that

1 1
w@——‘Az——(i_{_hz)“—t_ih.

Therefore, it follows that

~ A%h? (1 4 h¥r%)2 i
w~—2ﬁ- ——(1—h‘)‘ __z—~L .

Since w ™ i/(z—L) in the neighborhood of B, we find that

12 — k)2
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and we find from Egq. (2.5) that

_ VEh(l—n (1~ ) (1 — o2y
e (e e (2.6)

Integrating this equation between z = 0 and t = 0, we obtain

.. Vi (1 + h2r?) 1 —|— 2r2 | rt L 2r2 n i th n
(27 _(T—T)ﬁ’— =1 + + Rt HY (1 + £2h?)3 {
1 1422 b2 rt th 1 1427
+‘1§[5_‘ w T “-13775](1+z2h2)2 ‘ T[s“ rEamian
" + 22 th i 1427 rth2e re 14 ith
R Tae +“h“]1‘t2h"—"f§_[5_ T T —5F]1n1—uhr

where r and h are connected by Eq. (2.3). When t = ih, we obtain a relation between the initial magmtude L
and the parameter h, The graph of this dependence is depicted in Fig. 5 for h <h;. Whent = elf (0<6<
7/2) we obtain the ejection cone formula. A cone for h = h, and L. = L, ~ 0.3564 is depicted in Fig. 3a.

2. h > hy, r a complex number. In this case the exterior of a unit circle and a section along the
imaginary semiaxis is the flow region in the @ plane (cf. Fig., 4b). The function & has a second-order pole
at B and nowhere vanishes in the flow region. If we continue @ to the entire complex plane according to
symmetry, we find that

(4 2hey
=1 (2 --h2)e ° 2.7

Using Eq. (2.2), we obtain a differential equation for determining the shape of the ejection cone,

L dz 2 (4 — g2 (12 — %) (1 — 122)
Var A 7 (DT .

When t = r dz/dt & (t—r), so that the conformal property is violated at this point and z—zy & (t—1)% The
independent variable varies by 7 asthepoint F is circuited in the t plane. Consequently, the independent
variable will vary by 2% in a circuit in the z plane. Using the previously described method we find that

PR CLUEL Y

and, using Eq. (2.3), we obtain

— 32 4 — __1__ 2__
o h4)(14h2)(1 t)[t+1(1:1(2; ) 2” -

Integration of this equation yields

g (=WR T (WG R)
=" 0T Ry B AT 2hy
1 —h&Y (A + (B — k2R RS) 1k JUERE ARy ) A ik
+ ( = )4(h° + TR ShE In s 2.9)

When t = ih, we obtain the relation between L and the parameter h:

1 \ef/ 4 2 1 2/ 4 4

— — R\ [ LR} L2 — —h){—+h
4 (" )K" ) ‘ ] (’L )(h ) 14 A2
L=+ 7A - ) In 75
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whose graph is depicted in Fig. 5 for h > hy. Substituting t = i, we ob-
tain an equation for calculating the width of the ejection cone,

{3 n2)3 2 . 1 — A% (1 1 A2 144
xoz( 4‘h5>{1—Th2—rh4—*( Lh( L)ln1ih}‘v

When h = hy, Eq. (2.6) coincides with Eq. (2.8‘)7,>the indepen-
dent variable of the complex velocity varies irregularly from n/2 to
3r/2 at the point D (cf. 4a and b) and the ejection cone has the form
given in Fig. 6 (curve 1). Evidently, part of the flow region is on the
second sheet of a Riemannian surface. A further increase in h leads

s, to the point F (t = r) in the @ plane (cf. Fig. 4b) moving along a circle
’So and the independent variable of the complex velocity continuously
B ] 4 varying from 3x/2 to n/2 at this point. The velocity direction varies
_0&{_\/ from ~3n/2 to —n/2, part of the flow region on the second sheet of 2
Riemannian surface decreases, and, beginfhing with h = hg, the entire
Fig. 7 flow fits on a single sheet (cf. Fig, 6, curve 2).

As h = 1 dipole interaction decreases and a cone corresponding
to a single dipole is obtained within the right half-plane (cf. Fig. 6,
curve 3). The variable hy is determined from the condition that the point at which velocity is directed ver-
tically downward is on the imaginary axis, i.e., hy is a solution of the system of equations

. { Rew=0,

=0,

6

where w and x are determined by Egs. (2.7) and (2.9) when t = ei ,arg(r) < 8 < 1r/2 (arc FC). Numerical

solution of the system yields hy =~ 0.4933.

Let us turn to Fig. 5. It follows from the solution of the problem that there exists a single-sheeted
solution h =< hy and h = hy, and that the solution is two-sheeted when hy < h <hs., When Ly = L'< L, (Iy ®
0.243, L, = 0,3564) three values of the parameter correspond to the initial L, i.e., the problem has three
solutions within this interval. Consequently, a one-sheeted solution may be correlated to every value of L.
There exists two one-sheeted solutions when Ly = L = L, (I ™ 0.3516).

It should be noted that it is possible to construct one more solution when 0 = h = h; that is everywhere
one-sheeted but possesses a dead zone [5].% For this purpose it is necessary that the imaginary axis be a
solid wall. When h = h;, the cone touches this wall and a subsequent decrease in h leads to the formulation
of a rectilinear vertical segment of the cone boundary on which flow rate first increases to some (deter-
mined in the course of solving the problem) V; and then again decreases to one. The flow region in the w
plane remains invariant. A groove in the positive direction of the imaginary axis up to V (Vi > 1) appears
in the w plane when h < hy. A dead zone that vanishes as h — 0 is formed in the physical plane within the
flow region.

The areas of ejection cones were calculated using the solution as a function of the distance between
the charges (S, is the cone area at L = 0) (Fig. 7). Only one-sheeted solutionswere considered. It is evident
from the graph that interaction of the charges in this case as well does not increase the cone area. Maxi-
mal éfficiency of charges is obtained when they do not interact and are set off together.
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